Reduced electron recombination of dye-sensitized solar cells based on TiO2 spheres consisting of ultrathin nanosheets with [001] facet exposed

نویسندگان

  • Hongxia Wang
  • Meinan Liu
  • Cheng Yan
  • John Bell
چکیده

An anatase TiO(2) material with hierarchically structured spheres consisting of ultrathin nanosheets with 100% of the [001] facet exposed was employed to fabricate dye-sensitized solar cells (DSCs). Investigation of the electron transport and back reaction of the DSCs by electrochemical impedance spectroscopy showed that the spheres had a threefold lower electron recombination rate compared to the conventional TiO(2) nanoparticles. In contrast, the effective electron diffusion coefficient, D(n), was not sensitive to the variation of the TiO(2) morphology. The TiO(2) spheres showed the same D(n) as that of the nanoparticles. The influence of TiCl(4) post-treatment on the conduction band of the TiO(2) spheres and on the kinetics of electron transport and back reactions was also investigated. It was found that the TiCl(4) post-treatment caused a downward shift of the TiO(2) conduction band edge by 30 meV. Meanwhile, a fourfold increase of the effective electron lifetime of the DSC was also observed after TiCl(4) treatment. The synergistic effect of the variation of the TiO(2) conduction band and the electron recombination determined the open-circuit voltage of the DSC.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A facile synthesis of anatase TiO2 nanosheets-based hierarchical spheres with over 90% {001} facets for dye-sensitized solar cells.

Anatase TiO(2) nanosheets-based hierarchical spheres with over 90% {001} facets synthesized via a diethylene glycol-solvothermal route were used as photoanodes of dye-sensitized solar cells, which generated an energy conversion efficiency of 7.51%.

متن کامل

Fabrication of Novel High Potential Chromium-Doped TiO2 Nanoparticulate Electrode-based Dye-Sensitized Solar Cell (DSSC)

In the current study, pure TiO2 and Cr-doped TiO2 (Cr@TiO2) nanoparticles were synthesized via sol-gel method and the resulting materials were applied to prepare the porous TiO2 electrodes for dye-sensitized solar cells (DSSCs). It is hypothesized that the advantages of the doping of the metal ions into TiO2 lattice are the temporary rapping of the photogenerated electron-hole (charge carriers)...

متن کامل

Influence of TiO2 layer thickness as photoanode in Dye Sensitized Solar Cells

Dye-sensitized solar cells (DSSCs) are categorized as some of inexpensive thin-film solar cells. The basis and foundation of these cells is a semiconductor that consists of an electrolyte and a light-sensitive anode. Titanium dioxide (TiO2) is a semiconductor that plays the role of anode and is the main constituent of these cells. In this paper, we have addressed the functionality and performan...

متن کامل

Effects of Sensitization with Natural Pigments on the Performance of Dye-sensitized Solar Cell (DSSC)

Three natural pigments including wild iris, black pomegranate bark and black grapes were used as sensitizer in dye sensitized solar cells (DSSCs) based on TiO2 nanoparticles. The results showed that the DSSC made of black pomegranate bark was more efficient than the other cells due to its strong bonding with TiO2 nanoparticles. Longer electron lifetime, lower electron recombination, and lower...

متن کامل

Fabrication of dye sensitized solar cells with a double layer photoanode

Dye sensitized solar cell was fabricated from a double layer photoanode. First, TiO2 nanoparticles  were synthesized by hydrothermal method. These TiO2 NPs were deposited on FTO glasses by electrophoretic deposition  method in applied voltage of 5 V and EPD time of 2.5-10 min. Then TiO2 hollow spheres (HSs) were synthesized by sacrificed template method with Carbon Spheres as template and TTIP ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2012